Find out more about online casinos. Source

    Глава 1     Глава 2     Глава 3   

Визуализация Data Mining моделей


Первая функция (иллюстрация построения модели), по сути, является визуализацией Data Mining модели. Существует много различных способов представления моделей, но графическое ее представление дает пользователю максимальную "ценность". Пользователь, в большинстве случаев, не является специалистом в моделировании, чаще всего он эксперт в своей предметной области. Поэтому модель Data Mining должна быть представлена на наиболее естественном для него языке или, хотя бы, содержать минимальное количество различных математических и технических элементов.

Таким образом, доступность является одной из основных характеристик модели Data Mining. Несмотря на это, существует и такой распространенный и наиболее простой способ представления модели, как "черный ящик". В этом случае пользователь не понимает поведения той модели, которой пользуется. Однако, несмотря на непонимание, он получает результат - выявленные закономерности. Классическим примером такой модели является модель нейронной сети.

Другой способ представления модели - представление ее в интуитивном, понятном виде. В этом случае пользователь действительно может понимать то, что происходит "внутри" модели. Таким образом, можно обеспечить его непосредственное участие в процессе. Такие модели обеспечивают пользователю возможность обсуждать ее логику с коллегами, клиентами и другими пользователями, или объяснять ее.

Понимание модели ведет к пониманию ее содержания. В результате понимания возрастает доверие к модели. Классическим примером является дерево решений. Построенное дерево решений действительно улучшает понимание модели, т.е. используемого инструмента Data Mining.

Кроме понимания, такие модели обеспечивают пользователя возможностью взаимодействовать с моделью, задавать ей вопросы и получать ответы. Примером такого взаимодействия является средство "что, если". При помощи диалога "система-пользователь" пользователь может получить понимание модели.

Теперь перейдем к функциям, которые помогают интерпретировать и оценить результаты построения Data Mining моделей. Это всевозможные графики, диаграммы, таблицы, списки и т.д.

Примерами средств визуализации, при помощи которых можно оценить качество модели, являются диаграмма рассеивания, таблица сопряженности, график изменения величины ошибки.

Таблица сопряженности используется для оценки результатов классификации. Такие таблицы применяются для различных методов классификации. Они уже использовались нами в предыдущих лекциях. Оценка качества построенной модели возможно только по окончанию процесса построения модели.

График изменения величины ошибки. График демонстрирует изменение величины ошибки в процессе работы модели. Например, в процессе работы нейронных сетей пользователь может наблюдать за изменением ошибки на обучающем и тестовом множествах и остановить обучение для недопущения "переобучения" сети. Здесь оценка качества модели и его изменения может оцениваться непосредственно в процессе построения модели.

Примерами средств визуализации, которые помогают интерпретировать результат, являются: линия тренда в линейной регрессии, карты Кохонена, диаграмма рассеивания в кластерном анализе.