Глава 1     Глава 2     Глава 3   

Стандарты, относящиеся к унификации интерфейсов


С помощью стандартов этой группы любое приложение может получить доступ к функциональности Data Mining. Здесь можно выделить стандарты, направленные на стандартизацию интерфейсов для объектных языков программирования, и стандарты, направленные на разработку надстройки над языком SQL.

К стандартам, направленным на стандартизацию интерфейсов для объектных языков программирования, можно отнести: CWM Data Mining, JDM.

В 2000 году организации MDC (MetaData Coalition, www.mdcinfo.com) и OMG (Object Management Group, www.omg.org), разрабатывающие два конкурирующих стандарта - в области интеллектуальных технологий для бизнеса - OIM (Open Information Model) и CWM (Common Warehouse Metamodel) - общую метамодель хранилищ данных решили объединить свои достижения и усилия под управлением OMG. Стандарт CWM включает описание базовых элементов объектной модели, реляционных отношений, языка XML, структуры семантики предметной области, архитектуры OLAP, добычи данных, технологии перегрузки данных и некоторых расширений.

JDM (The Java Data Mining standard - Java Specification Request 73, JSR-73). Стандарт, разработанный группой JSR 73, Java Data Mining API (JDM) - это первая попытка создать стандартный Java API (программный интерфейс приложения) для получения доступа к инструментам Data Mining из Java-приложений.

Вторая группа стандартов направлена на разработку надстройки над языком SQL, которая позволяла бы обращаться к инструментарию Data Mining, встроенному непосредственно в реляционную базу данных. К этой группе можно отнести следующие стандарты: SQL/MM, OLE DB for Data Mining.

Стандарт SQL/MM представляет собой набор определенных пользователем SQL процедур для возможностей вычислений и использований моделей Data Mining.

The OLE DB for Data Mining standard of Microsoft. Этот стандарт позволяет, подобно SQL/MM, применять методы Data Mining в структуре реляционных баз данных. Этот стандарт является расширением OLE DB.

Стандарты, имеющие прямое или опосредованное отношение к Data Mining, можно объединить в группы:

•              стандарты, базирующиеся на услугах Data Mining (услуги создания модели управления, скоринговые услуги, услуги анализа данных, услуги исследования данных, статистические услуги моделирования);

•              стандарты web-службы (SOAP/XML, WSRF, и т.д), Grid-Услуги (OGSA, OGSA/DAI, и т.д.), Семантические Стандарты Web (RDF, OWL, и т.д.);

•              стандарты, которые должны появиться в ближайшее время: стандарты для технологического процесса, стандарты для преобразований данных, стандарты для оперативного (real time) Data Mining, стандарты для сетей данных (data webs).

Как мы видим, стандарты Data Mining развиваются, появляются также новые, имеющие как прямое, так и опосредованное отношение к этой технологии. Это свидетельствует о достаточной "зрелости" Data Mining и вступлении ее в новый этап развития.

На рынке программного обеспечения Data Mining существует огромное разнообразие продуктов, относящихся к этой категории. И не растеряться в нем достаточно сложно. Для выбора продукта следует тщательно изучить задачи, поставленные перед Вами, и обозначить те результаты, которые необходимо получить.

Приведем цитату из Руководства по приобретению продуктов Data Mining (Enterprise Data Mining Buying Guide) компании Aberdeen Group: "Data Mining - технология добычи полезной информации из баз данных. Однако в связи с существенными различиями между инструментами, опытом и финансовым состоянием поставщиков продуктов, предприятиям необходимо тщательно оценивать предполагаемых разработчиков Data Mining и партнеров".

Существуют различные варианты решений по внедрению инструментов Data Mining, например:

•              покупка готового программного обеспечения Data Mining;

•              покупка программного обеспечения Data Mining, адаптированного под конкретный бизнес;
•              разработка Data Mining-продукта на заказ сторонней компанией;

•              разработка Data Mining-продукта своими силами;

•              различные комбинации вариантов, описанных выше, в том числе использование различных библиотек, компонентов и инструментальные наборы для разработчиков создания встроенных приложений Data Mining.

В этой лекции мы рассмотрим, что предлагает рынок готового программного обеспечения, в частности, оценим рынок в разрезе задач Data Mining.