таможенный брокер, международный перевозка, грузоперевозки по россии

    Глава 1     Глава 2     Глава 3   

Новые алгоритмы и некоторые модификации алгоритмов кластерного анализа


Методы, которые мы рассмотрели в этой и предыдущей лекциях, являются "классикой" кластерного анализа. До последнего времени основным критерием, по которому оценивался алгоритм кластеризации, было качество кластеризации: полагалось, чтобы весь набор данных умещался в оперативной памяти.

Однако сейчас, в связи с появлением сверхбольших баз данных, появились новые требования, которым должен удовлетворять алгоритм кластеризации. Основное из них, как уже упоминалось в предыдущих лекциях, - это масштабируемость алгоритма.

Отметим также другие свойства, которым должен удовлетворять алгоритм кластеризации: независимость результатов от порядка входных данных; независимость параметров алгоритма от входных данных.

В последнее время ведутся активные разработки новых алгоритмов кластеризации, способных обрабатывать сверхбольшие базы данных. В них основное внимание уделяется масштабируемости. К таким алгоритмам относятся обобщенное представление кластеров (summarized cluster representation), а также выборка и использование структур данных, поддерживаемых нижележащими СУБД [33].

Разработаны алгоритмы, в которых методы иерархической кластеризации интегрированы с другими методами. К таким алгоритмам относятся: BIRCH, CURE, CHAMELEON, ROCK.