Глава 1     Глава 2     Глава 3   

Выводы


В лекции мы рассмотрели метод деревьев решений; определить его кратко можно как иерархическое, гибкое средство предсказания принадлежности объектов к определенному классу или прогнозирования значений числовых переменных.

Качество работы рассмотренного метода деревьев решений зависит как от выбора алгоритма, так и от набора исследуемых данных. Несмотря на все преимущества данного метода, следует помнить, что для того, чтобы построить качественную модель, необходимо понимать природу взаимосвязи между зависимыми и независимыми переменными и подготовить достаточный набор данных.

Методы классификации и прогнозирования. Метод опорных векторов. Метод "ближайшего соседа". Байесовская классификация

В предыдущих лекциях мы рассмотрели такие методы классификации и прогнозирования как линейная регрессия и деревья решений; в этой лекции мы продолжим знакомство с методами этой группы и рассмотрим следующие из них: метод опорных векторов, метод ближайшего соседа (метод рассуждений на основе прецедентов) и байесовскую классификацию.