Глава 1     Глава 2     Глава 3   

ВЫВОД ИТОГОВ


Таблица 8.3а. Регрессионная статистика Регрессионная статистика Множественный R 0,998364 R-квадрат 0,99673 Нормированный R-квадрат 0,996321 Стандартная ошибка 0,42405 Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а, - регрессионную статистику.

Величина R-квадрат, называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата, близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии


Коэффициенты Стандартная ошибка t-статистика


Y-пересечение

2,694545455

0,33176878

8,121757129

Переменная X 1 2,305454545

0,04668634

49,38177965

* Приведен усеченный вариант расчетов

93

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б. Здесь даны  коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455


Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в. представлены результаты вывода остатков. Для того чтобы эти результаты  появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".