Глава 1     Глава 2     Глава 3   

Сложность подготовки данных


Успешный анализ требует качественной предобработки данных. По утверждению аналитиков и пользователей баз данных, процесс предобработки может занять до 80% процентов всего Data Mining-процесса.

Таким образом, чтобы технология работала на себя, потребуется много усилий и времени, которые уходят на предварительный анализ данных, выбор модели и ее корректировку.


Большой процент ложных, недостоверных или бессмысленных результатов

С помощью Data Mining можно отыскивать действительно очень ценную информацию, которая вскоре даст большие дивиденды в виде финансовой и конкурентной выгоды.


Высокая стоимость

Качественная Data Mining-программа может стоить достаточно дорого для компании. Вариантом служит приобретение уже готового решения с предварительной проверкой его использования, например на демо-версии с небольшой выборкой данных.


Наличие достаточного количества репрезентативных данных

Средства Data Mining, в отличие от статистических, теоретически не требуют наличия строго определенного количества ретроспективных данных. Эта особенность может стать причиной обнаружения недостоверных, ложных моделей и, как результат, принятия на их основе неверных решений. Необходимо осуществлять контроль статистической значимости обнаруженных знаний.