Глава 1     Глава 2     Глава 3   

Решение задачи классификации новых объектов 3


Сначала рассмотрим в качестве примера метод k-ближайших соседей с использованием одного ближайшего соседа, т.е. при k, равном единице. Мы ищем набор примеров (зеленые прямоугольники) и выделяем из их числа ближайший к точке запроса X. Для нашего случая ближайший пример - точка (x4 ;y4). Выход x4 (т.е. y4), таким образом, принимается в качестве результата предсказания выхода X (т.е. Y). Следовательно, для одного ближайшего соседа можем записать: выход Y равен y4 (Y = y4 ).

Далее рассмотрим ситуацию, когда k равно двум, т.е. рассмотрим двух ближайших соседей. В этом случае мы выделяем уже две ближайшие к X точки. На нашем графике это точки y3 и y4 соответственно. Вычислив среднее их выходов, записываем решение для Y в виде Y = (y3 + y4)/2.

Решение задачи прогнозирования осуществляется путем переноса описанных выше действий на использование произвольного числа ближайших соседей таким образом, что выход Y точки запроса X вычисляется как среднеарифметическое значение выходов k-ближайших соседей точки запроса.

Предсказание в задаче прогнозирования получается усреднением выходов k-ближайших соседей, а решение задачи классификации основано на принципе "по большинству голосов".

Критическим моментом в использовании метода k-ближайших соседей является выбор параметра k. Он один из наиболее важных факторов, определяющих качество прогнозной либо классификационной модели.

Если выбрано слишком маленькое значение параметра k, возникает вероятность большого разброса значений прогноза. Если выбранное значение слишком велико, это может привести к сильной смещенности модели. Таким образом, мы видим, что должно быть выбрано оптимальное значение параметра k. То есть это значение должно быть настолько большим, чтобы свести к минимуму вероятность неверной классификации, и одновременно, достаточно малым, чтобы k соседей были расположены достаточно близко к точке запроса.

Таким образом, мы рассматриваем k как сглаживающий параметр, для которого должен быть найден компромисс между силой размаха (разброса) модели и ее смещенностью.